

Page 2 of 3

TY.B. Tech. Mech. SemI

(b)	Explain freedom and constraint topology (FACT) approach used for synthesis of compliant mechanisms	5	3	6
5 (a)	Find the force on free end of fixed-free beam deflected by an angle 15° and 20° . Consider Pseudo-rigid-body model of a cantilever beam and horizontal to vertical force ratio being 1.5. Following are the geometric and material properties of the beam length, $L = 250$ mm, thickness, $T = 5$ mm, height, $H = 50$ mm, Youngs Modulus, $E = 210\ 000$ N mm ⁻² . Also find new displaced position of the free end of the beam and maximum stress. Take $\gamma=0.85$ and $K_{\theta}=2.65$.	15	3	3,5
(b)	Draw schematic diagram of flexural mechanism used for X-Y scanning of focused laser beam in on-axis microstereolithography. State advantages of the on-axis scanning.	5	4	7

T.Y. B. Tech. Sem I

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058.

(Value Added Course)

Max. Marks:100

Class: T.Y B.tech

Semester: V

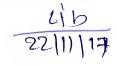
Name of the Course: Digital Manufacturing.

Instructions:

Program: B.Tech (Mech) Course Code: BTM526 Master file.

Duration: 3hr

- 1. Solve any five questions out of seven
- 2. Figures to the right indicates full marks
- 3. Assume suitable data wherever necessary


Question no.	Questions	Maxi. marks	Course outcome no
Q.1 (a)	Explain Role of Digital Manufacturing in Automotive/Auto Component industries in detail along with neat figures	10	1
Q.1 (b)	Explain the concept of Virtual Commissioning?	10	1
Q.2 (a)	What is the significance of conversion of CAD to VR Model? Explain the steps in detail to convert a CAD Model to VR Model? Supplement your explanation with appropriate figures?	15	3
Q.2 (b)	Comment on the Research and Development Status of Digital Manufacturing	05	2
Q.3 (a)	Explain the procedure to import the ROBOT & Welding Gun from the DELMIA catalog?	10	2
Q.3 (b)	Explain the procedure to create a Digital factory using DELMIA Software tool?	10	4
Q.4(a)	Explain in the detail Virtual Ergonomics?	10	3
Q.4(b)	Explain the Hardware & Software technologies used for Digital Manufacturing?	10	2

T.Y. B. Tech. Sem I

O_{τ}	Explain the concept of Bionic Manufacturing?	10	2
Q.5(a)	Explain the concept of Holonic Manufacturing?	10	3
Q.6 (a)	Explain the Advantages of Digital Manufacturing?	10	1
Q.6 (b) Q.7(a)	Explain the Architecture of Digital manufacturing? Role of Manikins & Avatars in virtual Environment?	10	2
Q.7(b)	What is the role of Digital Manufacturing technology in Engineering Education?	10	3

T.Y.B. Tech. (Mech) Sem V

BHARATIYA VIDYA BHAVAN'S SARDAR PATEL COLLEGE OF ENGINEERING (A Government Aided Autonomous Institute)

Duration: 3 Hrs

Master file.

Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Examination; November 2017

Maximum Marks: 100

Class: T.Y. B. Tech. (Mechanical)

Semester: V

Course Code: BTM505

Program: B. Tech. (Mechanical Engineering) Name of the Course: HYDRAULIC MACHINERY

Instructions:

- Question number 1 and 2 are compulsory. 1.
- Solve any 3 questions from remaining questions (Question number 3 to 7) 2.
- Draw neat diagrams wherever necessary. 2.
- Assume suitable data if necessary. 2

<u>3.</u> Q.	Assume	suitable di	ata 11 nece	<u>ssary.</u>			<u></u>		Max. Points	CO No.	M. No.
No.	Tests on a		numn gai	ve the follo	wing resu	lts:-			10	2	7
1 (a)		0	200	400	600	800	1000]			
	Q (lpm)	9.5	9.15	8.2	6.8	5.2	2				
	Hm (m)	9.5	9.15	voirs A ar	d R The	common r	pipe upto ju	nction J is		1	
	200 - 1	~ and 15 a	m diamete	er The nin	e trom iun	ction J to	reservon F	x 15 150 m			
	300 m lon	g and 15 c	notor The	nine from	iunction	J to reser	voir B is 1	00 m long			
	and 10 cm	n diameter.	The coeff	ficient of f	riction for	all pipes	is 0.025 h	$f=\frac{flv^2}{2gd}\bigg).$			
	1 1	- Alexalty E	stimate the	discharge	to reserve	ors A and	bove the su B.				
(b)	In water p Assuming determine if the sele (i) Francis	oower site, g a turbin e the least 1 ection rests s turbine w	the availa e efficien number of with- ith Ns not	ble dischar cy of 889 machines, greater tha	rge is 340 % and ro all of the an 230.	m ⁷ /s under tational s	er a net hea speed of 1 , that may b	oo./ ipin,		4	1,3
	What will economic	al? (refere	tput of eac nce Ns giv	ch unit? W ven by con	hich of th sidering s	peed in rp	allations w m, power i	li K w, aliu		3	3
2 (a)	head of 5 m above reading of	5.2 m. It is the tail rac of 5.2 m	provided v e level. A of water (with a draf vaccum ga gauge). A	t tube with auge conne ssume dra hube.	ected to th aft tube e	oing 2850 k (diameter 3 e draft tube fficiency a	indicates a s 75% and	L L		
(b)		- 1. matarno	of Uand_D	liccharge (Hm VS())	character	istics of for	ward faced	, 10	1	6
	radial, an the expr	d backwar ession for	d faced ou manomet ward face	tlet vane a ric head i d vane im	ngled impo in terms of peller. Ex	of speed, plain why	ntrifugal pu discharge generally ferred in de	and design centrifuga	n		

Page 1 of 3

TY. B. Tech. Mech. Sem V

3 (a)	Manometric head discharge characteristics of a centrifugal pump is given by the	10	3	7
	equation:	×v		
	$Hm=20+15Q-600Q^2$			
	Where Hm is in m and Q is in m^3/s . System curve for a typical installation is	:		
	estimated as $10+900Q^2$ (Q is in m ³ /s), where 10 is static head in m.			
	If the NPSHR characteristics of the pump is given by equation:	:		
	NPSHR= $20Q+60Q^2$	1.0		
	where Q is in m^3/s , evaluate how high the pump can be safely installed above the			
	sump if suction pipe diameter is 15 cm, pipe length on suction side is 1.5 times			
	static suction lift and 'f' for the pipe is 0.016. Evaluate the cavitation parameter ' σ '			
	if pump runs at 1440 rpm and operates at duty point. Calculate the specific speed			
	and suction specific speed. Take atmospheric and vapour pressure being 10.3 and			
	2.5 mWc respectively.			
h)	The following data pertain to a Inward flow Francis turbine:	10	2	3
b)		10	4	2
	Net head=70 m, Speed=700 rpm, Shaft Power =330 KW, Overall efficiency=85%,			
	Hydraulic efficiency=92%, Flow ratio=0.22,			
	Breadth ratio (width at inlet/Diameter at intlet) =0.1,			
	Outer diameter of runner=2x inner diameter of runner			
	Velocity of flow is constant with radial discharge at outlet.			
	The thickness of vanes occupy 6% of circumferential area of the runner.		d	
	Determine:			
	(i) Diameters of runner at inlet and outlet			
	(ii) Width of the wheel at inlet,			
	(iii) Guide blade angle, and			
	(iv) Runner vane angles at inlet and outlet.			
(a)	The impeller of a centrifugal pump has an outer diameter of 250 mm and an	10	2	ť
	effective area of 0.017 m ² . The blades are bent backwards so that the direction of			
	outlet relative velocity makes an angle of 148° with the tangent drawn in the			
	direction of impeller rotation, the diameters of suction and delivery pipes are 150			
	mm and 100 mm respectively. The pump delivers 0.031 m ³ /s at 1450 rpm when			
	the gauge points on the suction and delivery pipes close to the pumps shows heads			
	of 4.6 m below and 18 m above atmosphere respectively. The head losses in the			
	suction and delivery pipes are 2 m and 2.9 m respectively. The motor driving the			
	pump delivers 8.67 KW. Assuming that water enters the pump without shock and			
	whirl, determine:			
	(i) The manometric efficiency, and			
	(ii) The overall efficiency of the pump.			
b)	Write short note on (i) Cavitation in turbine (ii) Selection of turbines	10	4	4
5 (a)	The diameter and stroke of a single-acting reciprocating pump are 300 mm and	10	3	5
	500 mm respectively. The pump takes its supply of water from a sump 3.2 m			
	below the pump axis through a pipe 9 m long and 200 mm diameter. If separation			
	occurs at 2.4 m of water absolute, determine:			
	(i) The speed at which separation may take place at the beginning of suction			
	stroke, and			
	(ii) The speed of the pump if an air vessel is fitted on the suction side 6.75 m along			
	the length measured from the sump water level.		5	
	Take atmospheric pressure head=10.3 m of water, and friction co-efficient, f=0.04			
	(Take $h_f = flv^2/2gd$).			
				t
(b)	A centrifugal pump has a suction pipeline of 12.5 cm diameter and 10 m length.	10	4	

Page 2 of 3

T.Y.B. Jeh. Sem V (Mech)

4

	of specific gravity 0.8 0.015 kg/cm^2 absolut equation $15Q+65Q^2$ w in m ³ /s. If the ambien the pump can handle y	te. The where N nt press	NPSHR PSHR is sure is 1	in meter bar (abs)	s of wate determin	r column re the ma	absolute a ximum d	and Q is ischarge	5	1	5
6 (a)	What is negative slip	o in rec	iprocatin	g pump?	Explain	the same	with the	neip of	Э	I	5
(h)	indicator diagram. Write short note on	(i) wo	rking and	d signific	ance of	air vesse	I in recip	rocating	10	1	5
(b)	(ii) Coor Dump	•							5		4
(c)	A 1/5 scale turbine n turbine will work und KW of power using turbine (ii) Power dev	ler head 3 1.1 m veloped	l of 30 m l ³ /s of w l by proto	and spee ater, the stype.	n calcula	rpm. 11 m	odel deve	1005 100 [10	3	7
7 (a)	A centrifugal pump h	has the f	following	, characte			1	1	10	Ĵ	
	$Q(m^{3}/s) 0$ (0.009	0.018	0.027	0.036	0.045	0.054				
		21.8	20	17.6	14.5	10.6	4.8				
	The pump supplies water from a lake to a reservoir whose cross-sectional area is 40 m ² via 65 m of 15 cm diameter pipe for which f=0.028 $\left(h_f = \frac{flv^2}{2gd}\right)$. The pump is switched on when the level in reservoir is 5 m above the water level in the lake and is switched off when the level is 18 m. By plotting the pump characteristic and the system curve at say 30 min intervals (assuming constant discharge during the chosen time interval) obtain a graph showing a relationship between the pump discharge and time for one cycle of operation. How long does the cycle last?										
(b)	A single jet Pelton t The available head a 95%, Pelton wheel bucket velocity 0.44 velocity of the water (i) The flow in m ³ /s,	turbine at the ne efficien 6 of jet r leavin	is require ozzle is 7 ncy 87%, t velocity	60 m. As coefficie	ve a gene ssuming e ent of vel angle of	electric ge locity for bucket 1	evelop 10 moration $($ nozzle 0. 5° and th	efficiency 97, mean e relative		2	2

<u>Lib</u> 17/11/2017

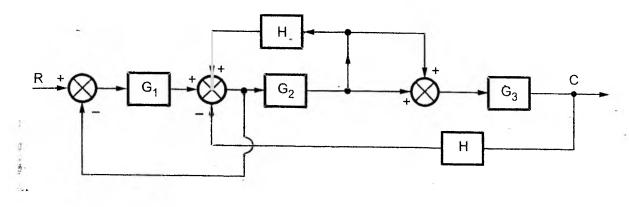
TY, B. Tech. Mech. Sem V Bharatiya Vidya Bhavan's Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam (Nov 2017)

Max. Marks: 100 Class: T.Y(Mechanical) Semester: V Name of the Course: Mechatronics Q. P. Code: Duration: 3 Hour Program: B.Tech Course Code : BTM503

Master file.

Instructions:


1. Answer any five questions including Q.No.1 which is compulsory.

2. Assume suitable additional data if necessary and state the same.

Q. No		Max. Marks	CO No.	Module No
Q1	Answer any four :-	20	1,4,2,3,	3,5,1,2,4
	a) Dominant ON and dominant OFF electrical circuit.	(5each)		
	b) Analog computer method for determining system response.			
	c) Use of Counterbalance pressure control valve in arresting the			
	free falling of hydraulic heavy duty piston.			
	d) Open and close loop control systems.	0		
	e)Advantages and applications of Microelectromechanical systems(MEMS)			
	f) Components of a Mechatronics System.			
Q2	A)Sketch the root locus systematically for open loop	12	3	6
	transfer function G(s)H(S) =K(S+1)			1
	S ² (S+3)(S+5)			
	Find the value of K for any two arbitrary points on the root			
	locus.(Use graph sheet for plotting)			
		08	3	5
	B)A system has the transfer function	08	3	
	$\theta_0 / \theta_i = 5(0.5 \text{ S} + 1) / [(3D + 1)(2D^2 + 4D + 1)]$			
	Study the nature of the system by examining its response to a step			
	input disturbance θ_i = 3.			
	(Refer Laplace conversion table)			
Q3	A) Construct the Bode plot for a unity feedback control system having	12	5	4
	$G(s) = 10(S+10) / {S(S+2)(S+5)}$			
	Find the Gain margin and Phase margin and comment on the			
	stability of the system.(Use semi log graph sheet for plotting)			
	B) A system has the transfer function	08	5	3
	$\theta_0 / \theta_i = K(1 + T_1 D) / [(1 + T_2 D)(1 + T_3 D)]$			
	Assuming K=20; T_1 =0.2 sec; T_2 =0.3 sec; T_3 = 0.05sec, establish the			
	frequency response characteristic of the system. Make the polar plot of the data.			

Q4	T.Y.B. Tech. Mech. Sem Z A) Draw the block diagram of a microprocessor and explain the	10	1	2
	three segments (ALU, Register and Control unit) of a micro			-
	processor.			
	State the characteristics, important features and functions of			
	micro-processor.			
	B) Obtain the transfer function for the given system by using Block	10	3	4
	Diagram reduction technique (Fig 1)			
Q5	A) Construct ladder diagram, allocation table and PLC diagram for	8	1	3
	the following operation sequence.			
	A Circuit that can be used to start a motor and then after a delay			
	of 100s start a pump. When the motor is switched off there could			
	be a delay of 10s before the pump is switched off.			
	B)Examine the stability of the system by Routh's criterion:	12		r
	a) S ⁴ + 10 S ³ + 35 S ² +50S +24 =0	12	4	5
	b) S ⁶ + 4 S ⁵ + 3 S ⁴ 16S ² 64S-48=0			
	c) S [S3 + 5S ² + 5S +4] +K=0; find the range of values of K for			
0	stable system.			
Q6	A)Three double acting cylinders A,B and C are used in an	14	2	3
	automation system and the sequence of motion for the three			
	pneumatic cylinders are:-			
	A + (BC) + /delay A / A +/delay A (BC)			
	Auxiliary condition is single or continuous cycle.			
	Use CASCADE method to draw the pneumatic circuit. Prepare the			
	parts list.			
	B) With own circuit show the application of counter relay in	06	4	7
	electro-pneumatic control.	00	-	
Q7	A) An electro-hydraulic system is selected for a sequential	14	2	3
	hydraulic cylinders actuation in a stamping cycle.			
	Cylinder A is hydraulic double acting clamping cylinder.			
	Cylinder B is hydraulic double acting stamping cylinder.			
	Cylinder C is hydraulic double acting ejecting cylinder.			
	The sequence of movements for the three cylinders is: A + B + /			
	delay B A C+ / delay C Cylinder A and C are having single			
	solenoid valves and cylinder B is having double solenoid valve.			
	The auxiliary condition is single cycle or continuous cycle.			
	When an Emergency switch is actuated all the three cylinders are			
	to retract to the home position and the cycle can commence only		1	
	when the emergency switch is disabled.			
	Draw the electro hydraulic circuit and prepare the parts list.			

T.Y.B. Tech . Mech Sem I

0.	F(s)	<i>f(t)</i>	Comment
	<u><u>H</u> 8</u>	H.	Step .
	H s ³	Ht	Ramp
	$\frac{H}{\omega + a^2/\omega}$	$H \sin \omega t$	Sine
	$\frac{K}{1+Ts}$	$rac{K}{T} \cdot \epsilon^{-\prime \prime T}$	Free response of first-order system
	$\frac{K}{(1+T_1s)(1+T_2s)}$	$\frac{K}{T_1 - T_1} (e^{-t/T_1} - e^{-t/T_1})$	Free response of second-order system, $\xi > 1$
•	$\frac{K}{(1+Ts)^2}$	$\frac{Kt}{T^2} \cdot e^{-itT}$	As for 5, with $\xi = 1$
	$\frac{K}{e^{3}/\omega_{a}^{2} + (2\xi/\omega_{a})s + 1}$	$\frac{K\omega_n}{(1-t^2)^{1/t}} \cdot e^{-t\omega_n t} \cdot \sin \omega_d t$	As for 5, with $\xi < 1$
	$\frac{HK}{s(1+Ts)}$	$HK(1-e^{-t/T})$	First-order system, response
	$\frac{HK}{s^2(1+Ts)}$	$HKT\left(\epsilon^{-t/T}+\frac{t}{T}-1\right)$	to step input First-order system, response to ramp input
	$\frac{HK}{(\omega+s^2/\omega)(1+Ts)}$	$\frac{HK}{(1+\omega^{2}T^{2})^{1/2}} \left[\sin (\omega t - \phi) + \frac{\omega T}{(1+\omega^{2}T^{2})^{1/2}} e^{-t/T} \right]$ where $\phi = \tan^{-1} \omega T$	First-order system, response to sine input
	$\frac{HK}{s(1+T_1s)(1+T_ss)}$	$HK \left[1 + \frac{1}{T_{2} - T_{1}} (T_{1}e^{-t/T_{1}} - T_{2}e^{-t/T_{1}}) \right]$	Second-order system, response to step input when $\xi > 1$
	$\frac{HK}{s(1+Ts)^2}$	$HK \left[1 - \frac{T+t}{T} e^{-t/T} \right]$	Second-order system, response to step input when $\xi = 1$
_			
o.	F(8) HK	$\frac{f(l)}{HK[1 + (1 - l^2)^{-1/2} e^{-\frac{1}{2} w_n t} \sin (\omega_n t - \psi)]}$	Comment Second-order system, response
	$\overline{s[\theta^2/\omega_n^3+(2\xi/\omega_n)\vartheta+1]}$	$\frac{HK[1 + (1 - \xi^2)^{-1/2} e^{-\xi w_n t} \sin (\omega_d t - \psi)]}{\text{where } \psi = \tan^{-1} (1 - \xi^2)^{1/2} / -\xi}$	to step input when $\xi < 1$
	$\frac{HK}{s^2(1+T_1s)(1+T_2s)}$	$HK\left[t - T_{1} - T_{2} - \frac{1}{T_{1} - T_{2}}(T_{2}^{2}e^{-t/T_{2}} - T_{1}^{2}e^{-t/T_{1}})\right]$	Second-order system, $\xi > 1$, response to ramp input
	$\frac{HK}{s^2(1+Ts)^2}$	$HK[t-2T+(t+2T)e^{-t/T}]$	Second-order system, $\xi = \mathbf{T}_i$ response to ramp input
	$\frac{HK}{s^2(s^2/\omega_n^3+(2\xi/\omega_n)s+1)}$	$HK[t - 2\xi/\omega_n + (e^{-\xi - t/\omega_d}) \cdot \sin(\omega_d t - \psi)]$ where $\psi = 2 \tan^{-1} (1 - \xi^2)^{1/2} / (-\xi)$	Second-order system, $\xi < 1$, response to ramp input
($\frac{HK}{\omega + s^2/\omega(1 + T_1s)(1 + T_2s)}$	$HK\left[\frac{T_{1}^{*}\omega e^{-i/T_{1}}}{(T_{1}-T_{2})(1+T_{1}^{*}\omega^{*})}+\frac{T_{2}^{*}\omega e^{-i/T_{2}}}{(T_{2}-T_{1})(1+T_{2}^{*}\omega^{*})}\right]$	Second-order system, $\xi > 1$, response to sine input
•	· · ·	$+\frac{\sin(\omega t-\phi)}{[(1+T_1^2\omega^2)(1+T_1^2\omega^2)]^{1/2}}$	
	$\frac{HK}{(\omega+s^*/\omega)(1+Ts)^2}$	where $\phi = \tan^{-1} \omega T_1 + \tan^{-1} \omega T_2$ $\frac{HK}{1+T_2\omega^2} \left[\sin (\omega t - \phi) + \frac{\omega t + 2T\omega}{1+T^2\omega^2} e^{-t/T} \right]$ where $\phi = 2 \tan^{-1} \omega T$	Second-order system, $\xi = 1$, response to sine input
(<i>w</i>	$\frac{HK}{HK} = \frac{1}{(2\xi/\omega_n)(s^2/\omega_n^2 + (2\xi/\omega_n)(s+1))}$	$\frac{HK}{[(1 - \omega^2/\omega^2)^2 + (2\xi\omega/\omega_*)^2]^{1/2}}$	Second-order system, $\xi < 1$, response to sine input
ŧ.		$\cdot \left[\sin \left(\omega t - \phi \right) + \frac{\omega}{\omega} \cdot e^{-t \omega_n t} \sin \left(\omega_n t - \psi \right) \right]$	· /
		where $\phi = \tan^{-1} \frac{2\xi\omega/\omega_n}{1-\omega^2/\omega_n^2}; \psi = \tan^{-1} \frac{-2\xi(1-\omega_n^2)}{\omega^2/\omega_n^2-\omega^2/\omega_n^2}$	$\frac{-\xi^{2}}{1-2\xi^{2}}$
	$K_1 = 1/4$ is the damping ratio /* is the undamped natural free	equency frequency $\begin{cases} \text{associated with the quadratic} \\ K_1 D^2 + K_2 D + 1 = \frac{D^2}{\omega_a^2} + \frac{2\xi}{\omega_a} D + 1 = 0 \end{cases}$	s [*] , 2;

TABLE **TABLE** Laplace Transform Pairs Associated with the Factors $\frac{\theta_{\bullet}}{\theta_{\bullet}} = -$ K ,[~]θ. K

11 i i

1

-

T.Y.B. Tech, Sem V Mech.

Bharatiya Vidya Bhavan's

Sardar Patel College of Engineering

(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058

End Semester

November 2017

Date: 20/11/2017 Program: T. Y. B. Tech Semester: V Course code: BTM504 Duration: 3 Hours Maximum Marks: 100 Master file,

Name of the Course: Thermal Systems

Instructions: 1. Question number ONE is compulsory and solve any FOUR questions out of remaining SIX.

- 2. Steam table and Mollier diagram is allowed to use.
- 3. All sub questions to be grouped together.
- 4. Assume suitable assumptions and justify the same.

Question No.		Maximum Marks	Course Outcome Number	Module No.
Q1				<u> </u>
a)	Explain effect of pressure ratio on volumetric efficiency of reciprocating compressor.	05	CO1	2
b)	Describe all the elements of condensing plant with its use.	05	CO1	5
c)	Discuss about mountings and accessories of boilers.	05	CO4	4
d)	Discuss how reheating, regeneration and intercooling affect the efficiency and work output of open cycle gas turbine.	05	CO1	7
Q2				
a)	Consider a steam power plant operating on the simple ideal Rankine cycle. Steam enters the turbine at 3 MP and 350°C and is condensed in the condenser at a pressure of 75 kPa. Determine the thermal efficiency of this cycle.		CO1	3
b)	A two stage double acting air compressor delivers air at a rate of 1.35 kg/sec. The suction pressure is 1 bar and interstate pressure is 7 bar and delivery pressure 42 bar. Air enters the low pressure cylinder at 17°C and cooled in the intercooler to 32°C. The clearances in L.P. and H.P. cylinders are 6% and 8% of respective strokes. The law of compression and re-expansion is $pv^{1.21} = C$ in both cylinders. Speed of the compressor is 500 RPM. Find (i) The amount of cooling water required per minute in intercooler, if rise in temperature of water is limited to 20°C (ii) Power required (iii) Diameter and Stroke of L.P. cylinder if L=D.	12	CO3	2
Q3				
a)	Derive ideal intercooling pressure ratio with perfect intercooling of compressor for minimum work input.	10	COl	2
b)	Steam at a pressure of 20 bar with 50°C of superheat is	10	CO3	6

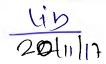
h	allowed to expand through a convergent-divergent nozzle. The exit pressure is 1 bar. If the nozzle is required to supply 2 kg/sec of steam to the turbine, then calculate (i) velocities at throat and exit (ii) areas at throat and exit.			
Q4			1	ļ
a)	Explain with neat sketch working of root blower and vane-type blower.	08	CO2	3
b)	In a single stage impulse turbine, the diameter of the blade ring is 1m and speed is 3000 RPM. The steam is issued from a nozzle at 300 m/sec and the nozzle angle is 20°. The blades are equiangular. If the friction loss in the blade channel is 19% of the K.E. corresponding to the relative velocity at the inlet to the blades, find power developed in the blading when the axial thrust on the blades is 90 N.	12	CO3	6
Q5				
a)	Explain the working of locomotive boiler with neat sketch.	10	CO4	4
b)	Draw neat sketch of evaporative condenser and explain its working.	10	CO4	5
Q6				
a)	Differentiate between axial and centrifugal compressors.	08	CO2	3
b)	The following data apply to a gas turbine set using a heat exchanger: Isentropic efficiency of compressor = 0.83, Isentropic efficiency of turbine = 0.85, Mechanical transmission efficiency = 0.99, combustion efficiency = 0.98, Heat exchanger effectiveness = 0.80, Pressure ratio = 4.0, Maximum cycle temperature = 1100 K, Ambient condition = 1 bar and 288 K, Lower heating value of fuel = 43,100 kJ/g. Take C _p =1.005 kJ/kg.K, γ = 1.4 during compression and C _p = 1.147 kJ/kg.K, γ = 1.3 during combustion and expansion. Calculate specific work output, specific fuel consumption and cycle efficiency. Neglect all losses.	12	CO3	7
Q7			1	<u> </u>
a)	Derive equation for maximum efficiency of Parsons's steam turbine.	10	CO4	6
b)	Enlist at least four applications of each components listed below. (i) compressor (ii) steam nozzles (iii) steam generator (iv) steam turbines (v) gas turbines	10	CO4	1,4,6 7

-

.

Lib 15/11/17

T.Y.B. Tech. Mech. Sem I Bharatiya Vidya Bhavan's Sardar Patel College of Engineering


(A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Exam November 2017

lov Ma	rks: 100	Duratio	n: 03 Hours
	V B Tech Semester: V Program: Mo	echanical	Engineering
	the Course: Theory of Machines II		de : BTM502
Instructi		Mac	tor file
	empt any five questions out of remaining six.	1 00	, • ,
1. Att	aw neat diagrams wherever required.		
2. Dra	sume suitable data if necessary.		
3. Ass Questi	sume suitable data it necessary.	Maxi	Course
on No		mum	Outcome
		Marks	Number
1(a)	Explain Prony Brake Dynamometer.	05	1
(b)	Explain any five main causes of vibration.	05	3
(c)	Derive an expression for natural frequency by using Rayleigh's	10	4
Q2(a)	Method. A multiplate disc clutch transmits 55 KW of power at 1800 r.p.m. The coefficient of friction is 0.1 and the axial intensity of pressure is not to exceed 160 KN/m ² . The internal radius is 80 mm and is 0.7 times the external radius. Find the number of plates needed to transmit the	10	1
(b)	 required torque. The hand operated brake as shown in figure is fitted to a shaft carrying a flywheel of mass 400 kg with a radius of gyration 45 cm running at 360 rpm. Determine: (i) Torque applied due to pull of 100 N (ii) Number of revolutions of the flywheel before it is brought to rest (iii) Time required to bring the flywheel to rest Take coefficient of friction 0.2. 		1
	10 cm 5 cm 25 cm 100 N 100 N 45 cm		
Q3(a)	The helical spring as shown in figure has a mean coil diameter $D=2.5$ cm, a wire diameter $d = 0.25$ cm and contains $n=20$ coils. The modulus of elasticity of the wire in shear is $G = 8.4 \times 10^5 \text{ Kg/cm}^2$ and the suspended weight is W=15 Kg. Calculate the period of free vibrations.		4

	T.YB Tech. Mech. Sem V		1
			-
(b)	A weight if 1 Kg is attached to a spring having stiffness 4 Kg/cm. The weight slides on a horizontal surface, the coefficient of friction between the weight and surface being 0.1. Determine the frequency of vibration of the system and the amplitude after one cycle if the initial amplitude is 0.25 cm. Determine the final rest position.	10	4
Q4(a)	Each arm of a porter governor is 250 mm long. The upper and lower arms are pivoted to links of 40 mm and 50 mm respectively from the axis of rotation. Each ball has a mass of 5 Kg and the sleeve mass is 50 Kg. The force of friction on the sleeve of mechanism is 40 N. Determine the range of speed of the governor for extreme radii of rotation of 125 mm and 150 mm.	12	1
(b)	Define the following terms relating to governors : i. Sensitiveness ii. Isochronism iii. Stability iv. Hunting	08	1
Q5	A ship is pitching a total angle of 15 [°] , the oscillation may be taken as simple harmonic and the complete period is 32 seconds. The turbine rotor mass is 600 Kg, its radius of gyration is 450 mm and it is rotating at 2400 r.p.m. Calculate the maximum value of gyroscopic value set by the rotor and its effect, when the bow is descending and the rotor is rotating clockwise looking from aft. What is the maximum angular acceleration to which the ship is subjected to while pitching?	20	1
Q 6	An epicyclic train is composed of fixed annular wheel A having 150 teeth. Meshing with A is wheel B which drives wheel D through an idle wheel C, wheel D being concentric with A. Wheels B and C are carried on an arm E which revolves clockwise at 100 r.p.m about the axis of A and D. If the wheel B and D have 25 and 40 teeth respectively, find the number of teeth on C and sense of rotation of C. Also sketch an arrangement.	20	1
Q7(a)	Three masses M_1 , M_2 and M_3 which rotate in transverse planes 1, 2 and 3 are to be balanced by the addition of two rotating masses m_A in plane A and m_B in plane B at a radius of 250 mm each. Given that $M_1 = 4.0$ kg, $M_2 = 6.4$ kg and $M_3 = 2.0$ kg. The location of centre of gravity of masses M_1 , M_2 and M_3 are 150 mm, 100 mm and 225 mm respectively, from the rotor axis. Also, the angular location of masses M_1 , M_2 and M_3 from X axis are 30^0 , 300^0 and 135^0 respectively as shown in figure	15	2

Rend		
9 *		
9 QM		
		•
MO 0		
The distance of transverse planes of masses M1. M2, M3 and		
planes B from the reference transverse plane A, are 75 mm, 200		
		1
$m_{\rm mm}$ 500 mm and 625 mm respectively. Determine m _A and m _B		
mm, 500 mm and 625 mm respectively. Determine m_A and m_B and show their angular positions for static balance of motor. Explain Balancing of	05	2

÷

Munshi Nagar, Andheri (West), Mumbai – 400058.

End Semester Examination; November 2017

Maximum Marks: 100

Semester: V

Class: T.Y. B. Tech. (Mechanical) Program: B. Tech. (Mechanical Engineering) Name of the Course: HYDRAULIC MACHINERY

Instructions:

Course Code: BTM505

Master file.

Duration: 3 Hrs

1. Question number 1 and 2 are compulsory.

2. Solve any 3 questions from remaining questions (Question number 3 to 7)

- 2. Draw neat diagrams wherever necessary.
- 3. Assume suitable data if necessary.

<u>3.</u>	Assumes	<u>surable (</u>	lata il neco	Contrack y .		<u></u>			Max. Points	CO No.	M. No.
10.			.1	we the fall	anying rea	mlte.			10	2	7
(a)	Tests on a		al pump ga	400	600	800	1000		10	-	ļ .
	Q (lpm)	0	9.15	8.2	6.8	5.2	2				
	Hm (m)	9.5	19.15	0.2	I U.O		pipe upto jui	nction L is			{
	The pump	supplies	to two rese	rvoirs A a	ind D. The	inction I t	o reservoir A	is 150 m			
	300 m lon	g and 15	cm diamet	er. The pr	pe nom jo	n I to rese	rvoir B is 10	0 m long			1
	and 10 cm	diameter	r. The coef	ficient of	friction fo	or all pipes	rvoir B is 10 is $0.025 \left(h \right)$	$f = \frac{f l v^2}{2g d} $			
	The water	levels in	reservoir A	A and B and B and B and B	e 4.6 m a	nd 5.75 m	above the su	ction tank			
	level respe	cuvely. I	Istimate the	the disch	$\frac{1}{100}$ is 34	$0 \text{ m}^3/\text{s unc}$	ler a net head	t of 30 m.	10	4	1,
(b)	In water p	ower site	, the availation	for of 85	$\frac{1}{2}$ and $\frac{1}{2}$	rotational	speed of 10	56.7 rpm,			
	Assuming	the least	number of	machines	all of the	e same siz	e, that may b	e installed			
	if the sele	tion rest	with.	machines	,		,				
	(i) Empoir	turbine 1	with Ns not	oreater th	an 230.				0		
	City Vamla	- tumbing	with Ne no	t greater f	han 685.						
	XX71 4	ha tha a	utout of ea	ch unit? \	Nhich of 1	the two ins	stallations wi	ll be more			
	what whi	all (rafer	ance Ns of	ven hv co	nsidering	speed in r	pm, power in	KW, and			
	1	atomal							1		
	Determin	a the aver	rall efficien	cy of a K	aplan turb	ine develo	ping 2850 K	W under a	10	3	3
2 (a)	Land of 5	2 m It is	nrovided	with a dra	iff tube w	ith its inlei	(diameter 5	m) SCL 1.0	1		
	have a	the tail re-	co level A	vaccum g	auge con	nected to the	ie dran tube	mulcales a			
	mabove	f 52 m	of water i	(gauge).	Assume d	raft tube	efficiency as	75% and			
	in an I ant he	and loot d	na to frictic	on in draft	fube.						
(1.)	Dunan	ab natura	of Head_T	ischarge ((Hm Vs C) character	ristics of forv	vard faced,	10	1	+ (
(b)	1 . 12 1	A to a line	nd faced or	tlet vane	angled im	neiler of ce	entriugai pui	IID. Derive			
	11	aning for	manamel	tric head	in terms	of speed.	discharge a	ina aesign	1	1	
	agontonto	for back	ward face	d vane in	npeller. E	xplain wh	y generally	cenunugai		[
	constants	notion wit	h hackware	I faced ou	tlet vane a	ingle is pre	ferred in desi	ign?			

Page 1 of 3

(a)	TY.B.Tech. Mech. Scm Z Manometric head discharge characteristics of a centrifugal pump is given by the	10	3	7
()	equation:			
	$Hm = 20 + 150 - 6000^2$			
	Where Hm is in m and Q is in m^3/s . System curve for a typical installation is			
	estimated as $10+900Q^2$ (Q is in m ³ /s), where 10 is static head in m.			
	If the NPSHR characteristics of the pump is given by equation:			
	NPSHR= $20Q+60Q^2$			
	where Q is in m^3/s , evaluate how high the pump can be safely installed above the			
	sump if suction pipe diameter is 15 cm, pipe length on suction side is 1.5 times			
	static suction lift and 'f' for the pipe is 0.016. Evaluate the cavitation parameter ' σ '			1
	if pump runs at 1440 rpm and operates at duty point. Calculate the specific speed			
	and suction specific speed. Take atmospheric and vapour pressure being 10.3 and			
	2.5 mWc respectively.			
1.)	The following data pertain to a Inward flow Francis turbine:	10	2	
b)	Net head=70 m, Speed=700 rpm, Shaft Power =330 KW, Overall efficiency=85%,	~ *		1
	Hydraulic efficiency=92%, Flow ratio=0.22,			
	Breadth ratio (width at inlet/Diameter at intlet) $=0.1$,			
	Outer diameter of runner=2x inner diameter of runner			
	Velocity of flow is constant with radial discharge at outlet.			1
	Velocity of flow is constant with radial discharge at outlet. T_{1} , this has a function group $60/$ of air sumformatical area of the number			1
	The thickness of vanes occupy 6% of circumferential area of the runner.			
	Determine:			
	(i) Diameters of runner at inlet and outlet			
	(ii) Width of the wheel at inlet,			
	(iii) Guide blade angle, and			
V and an and the	(iv) Runner vane angles at inlet and outlet.	10		+
4 (a)	The impeller of a centrifugal pump has an outer diameter of 250 mm and an	10	2	0
	effective area of 0.017 m ² . The blades are bent backwards so that the direction of			
	outlet relative velocity makes an angle of 148° with the tangent drawn in the			
	direction of impeller rotation, the diameters of suction and delivery pipes are 150			
	mm and 100 mm respectively. The pump delivers 0.031 m ³ /s at 1450 rpm when			
	the gauge points on the suction and delivery pipes close to the pumps shows heads			
	of 4.6 m below and 18 m above atmosphere respectively. The head losses in the			
	suction and delivery pipes are 2 m and 2.9 m respectively. The motor driving the			
	pump delivers 8.67 KW. Assuming that water enters the pump without shock and			
	whirl, determine:			
	whirl, determine:(i) The manometric efficiency, and(ii) The overall efficiency of the pump.			
b)	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines 	10	4	4
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines 	<u>10</u> 10	43	
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 		+	+
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m 		+	+
and the second second	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation 		+	
and the second second	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: 		+	
and the second second	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction 		+	
b) 5 (a)	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction stroke, and 		+	
and the second second	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction stroke, and (ii) The speed of the pump if an air vessel is fitted on the suction side 6.75 m along 		+	
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction stroke, and (ii) The speed of the pump if an air vessel is fitted on the suction side 6.75 m along the length measured from the sump water level. 		+	4
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction stroke, and (ii) The speed of the pump if an air vessel is fitted on the suction side 6.75 m along the length measured from the sump water level. Take atmospheric pressure head=10.3 m of water, and friction co-efficient, f=0.04 		+	
Contraction of the	 whirl, determine: (i) The manometric efficiency, and (ii) The overall efficiency of the pump. Write short note on (i) Cavitation in turbine (ii) Selection of turbines The diameter and stroke of a single-acting reciprocating pump are 300 mm and 500 mm respectively. The pump takes its supply of water from a sump 3.2 m below the pump axis through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, determine: (i) The speed at which separation may take place at the beginning of suction stroke, and (ii) The speed of the pump if an air vessel is fitted on the suction side 6.75 m along the length measured from the sump water level. 		+	

Page 2 of 3

	of specific	gravity	0.8, the	vapour p	ressure fo	or oil at	ambient 1	temperati	ire being			
	0.015 kg/ci											
	equation 15	5Q+65Q	² where 1	VPSHR is	s in meter	s of wate	r column	absolute	and Q is			
	in m ³ /s. If					determi	ne the ma	aximum o	lischarge			
	the pump c											
6 (a)	What is ne indicator d	iagram.		•					^	5	1	5
(b)	Write shor pump (ii) (Gear Pun	np	Ŭ	-					10	1	5
(c)	turbine wil KW of po	A 1/5 scale turbine model is tested under a head of 15 m. The actual (prototype) turbine will work under head of 30 m and speed of 450 rpm. If model develops 100 KW of power using $1.1 \text{ m}^3/\text{s}$ of water, then calculate: (i) speed of the model turbine (ii) Power developed by prototype.					5	3	4			
7 (a)	A centrifug					ristics				10	3	7
	$Q (m^3/s)$	0	0.009	0.018	0.027	0.036	0.045	0.054				
	Hm (m)	22.6	21.8	20	17.6	14.5	10.6	4.8				
	$40 \text{ m}^2 \text{ via}$	65 m of	1				1	a.41				
	is switched and is swit the system chosen tin discharge A single je	l on who ched off curve a ne interv and time	en the lev when th it say 30 (al) obta for one	vel in reso e level is min inter in a grap cycle of c	ervoir is 5 18 m. By rvals (ass h showin operation.	i m above plotting uming co ng a relat How lon	the pump instant dis ionship b g does the	er level ir characte scharge d between t c cycle la	the lake ristic and uring the he pump st?	10	2	2

T.Y.B. Tech, Mcch, Sem I BharatiyaVidyaBhavan's

Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai – 400058. End Semester Exam, Nov 2017

Max. Marks: 100 Class: T. Y. B. Tech. Semester: V Name of the Course: Heat and Mass Transfer Instructions:

Duration: 3 hrs Program: Mech. Engg. Course Code : BTM501 Master file.

- Question No 1 is compulsory.
- Attempt any Four questions out of Six questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Make suitable assumptions with proper explanations.
- Draw the suitable sketches wherever necessary

Q. No		Ma rks	CO NO	M No.	
Q1	Answer the following questions (any four)	20		1- 7	
А.	Differentiate between steady and transient heat conduction with specific examples. How does heat convection differ from conduction?		1		
B.	Explain the criteria of selection of fins. Define fin efficiency. Explain the importance of insulated tip solution for the fins used in practice.		1		
C.	What is LMTD correction factor? Why is a counter flow heat exchanger more effective than a parallel flow heat exchanger? How does fouling factor affect the performance of a heat exchanger?		1		
D.	State the examples of mass transfer in day-to-day life and industrial applications. What are the various mechanisms of mass transfer?		1		
Е.	What does the Grashof Number represent? How is it different from the Reynolds number? Explain the significance of Grashof Number in Natural convection heat transfer.		1		
Q2 (A)	A furnace wall is made up of refractory brick, red (fire) brick and outside plaster. There is an air gap with a thermal resistance of $0.15 \text{ m}^2\text{K/W}$ between the refractory brick and the red brick. The refractory brick, 120 mm thick, has K = 1.58 W/mK. The red brick, 120 mm thick has K = 0.3 W/mK. The outside plaster, 15 mm thick, has K = 0.15 W/mK. The two extreme temperatures of this wall are 1000°C and 100°C. (b) Determine (a) the heat flow rate in kI/hour m ² and the interface temperatures	10	4	2	

Determine (a) the heat flow rate in kJ/hour.m², and the interface temperatures.

1

T.Y.B. Tech Mech. Sem V

- (B) A hot cylindrical ingot (K = 60 W/mK, ρ = 7850 kg/m³, Cp = 0.430kJ/kgK) of 50 mm diameter and 250 mm length is removed from a furnace at 850°C and suddenly quenched in water at 20°C until its temperature drops to 550°C. Subsequently, the ingot is exposed to ambient air at 20°C and allowed to cool slowly to 100°C. The convective heat transfer coefficient is 250 W/m²K when the cooling medium is water and 25 W/m²K with air is the cooling fluid. Estimate the total time required for cooling from 850°C to 550°C in water. As well as estimate the time required for cooling from 550°C to 100°C in air. Estimate the total time required for cooling the ingot. State and justify any assumptions made.
- Q3 Air at 1 bar pressure and at 20°C flows over a rectangular container, with top 07 4 4

10

1

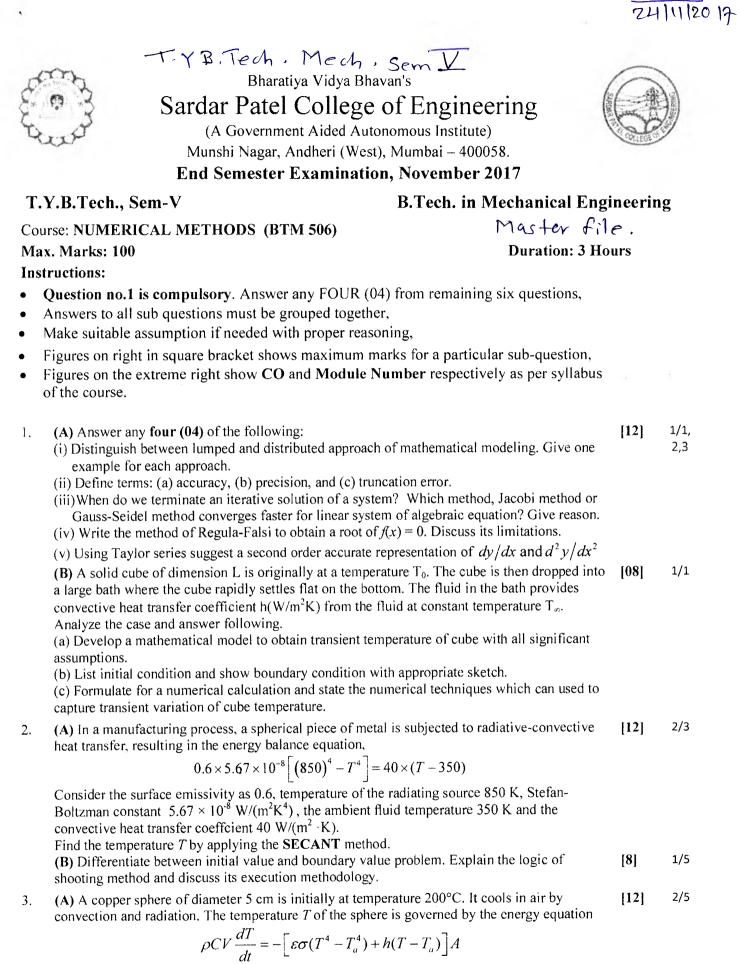
3

- (A) surface 750 mm long in direction of flow and one meter wide, at 35 m/s. Determine the heat transfer from the top surface maintained at 60°C. Use the co-relation as: $\overline{Nu} = 0.664 (Re)^{0.5} (Pr)^{0.33}$ if $Re \le 5 \times 10^5$ $\overline{Nu} = [0.037 (Re)^{0.5} - 850] (Pr)^{0.33}$ if $Re > 5 \times 10^5$ Use property table for properties of air at bulk temperature.
- (B) A refrigerated truck is moving at a speed of 90 km/hr where the ambient 10 4 temperature is 50°C. The body of the truck is of rectangular shape of size 10m (length) x 4m (width) x 3m (height). Assume that the boundary layer is turbulent on the four walls and the wall surface temperature is at 10°C. Neglect heat transfer from vertical front and backside of truck and flow of air is parallel to 10 m long side, calculate the heat loss from the four surfaces and power required to overcome the resistance acting on the four surfaces. For turbulent flow over flat surfaces: Nu = 0.036 (Re)^{0.8} (Pr)^{0.33}

Use property table for properties of air at bulk temperature.

- (C) What is Reynolds analogy? Describe the relation between fluid friction and 03 1 4 transfer.
- Q4 A cylindrical body of 300 mm diameter and 1.6 m height is maintained at a 06 4 4
 (A) constant temperature of 36.5C. The surrounding temperature is 13.5C. Find out the amount of heat to be generated by the body per hour.

Use the co-relation as: $Nu = 0.12 (Gr, Pr)^{0.33}$


Use property table for properties of air at bulk temperature.

- (B) What is natural convection? How is it different from forced convection? In which 04 2 4 mode of heat transfer will the convective heat transfer coefficient usually be higher, and why?
- (C) Consider two large parallel plates one at temperature 727°C with emissivity 0.8 10 4 5 and other at 227°C with emissivity 0.4. An aluminium radiation shield with an emissivity 0.05 on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.

T.Y.B. Tech Mech, Sem I

Q5 (A)	 A counter flow heat exchanger is employed to cool 0.55 kg/sec (Cp = 2.45 kJ/kgK) of oil from 115°C to 40°C by the use of water (Cp = 4.18 kJ/kgK). The inlet and outlet temperatures of cooling water are 15°C and 75°C, respectively. The overall heat transfer coefficient is expected to be 1450 W/m²K. Using NTU method, calculate the following: (a) mass flow rate of water (b) effectiveness of heat exchanger (c) surface area required 	08	4	6
(B)	Liquid oxygen (boiling temperature = -182° C) is to be stored in spherical container of 300 mm diameter. The system is insulated by an evacuated space between inner space and surrounding 450 mm inner diameter concentric sphere. For both spheres emissivities are 0.03 and temperature of the outer sphere is 30°C. Estimate the rate of heat flow by radiation to the oxygen in the container.	07	4	5
(C)	Prove that emissive power of a black body is equal to π times the intensity of radiation of black body.	05	2	5
Q6. (A)	Hydrogen gas at 25°C and 2.5 bar pressure flows through a rubber tubing of 12 mm inside radius and 24 mm outside radius. The binary diffusion coefficient of hydrogen is 2.1×10^{-8} m ² /s and the solubility of hydrogen is 0.055 m ³ of hydrogen per m3 of rubber at 1 bar. If the gas constant for hydrogen is 4160 J/kg.K and the concentration of hydrogen at the outer surface of tubing is negligible, calculate the diffusion flux rate of hydrogen per meter length of rubber tubing.	08	4	7
(B)	Estimate the heat transfer from a 40 W incandescent bulb at 125°C to 25°C in quiescent air. Approximate the bulb as a 50 mm diameter sphere. What percent of the power is lost by free convection? Assume that the characteristic length is the diameter of the sphere. Using equation: $Nu = 0.6 \{(Gr. Pr)^{0.25}\}$	07	4	4
(C)	Explain with neat sketches the different types of fins used in practice.	05	1	2
Q7	 Solve Following Questions (Any Four) A) Differentiate between isotropic and anisotropic materials. What is meant by thermal contact resistance? B) What is meant by lumped capacity analysis? What is the criterion of its validity? C) Describe the salient aspects in the selection and design of heat exchangers. D) Explain in details of Shape Factor Algebra with examples. 	20	1	1-7

- E) Define various types of concentrations, velocities and fluxes used in mass transfer.
- F) Explain the Physical interpretation of the Biot number and Fourier number.

All terms carries their usual meaning.

Evaluate the temperature variation with time using the RK-II method and determine the time needed for the temperature to drop below 100°C.

	T.Y.B. Tech. Mech. sem I		
	The following values may be used for the physical variables: $\rho = 9000 \text{ kg/m3}$, $C = 400 \text{ kg/m3}$, $C = 400 \text{ kg/m3}$, $C = 5.67 \times 10^{-8} \text{ W/(m}^2 \text{ K}^4)$, $T_a = 25^{\circ}\text{C}$, and $h = 15 \text{ W/(m}^2 \text{ K})$.		0
	(B) What is the need of numerical integration? Explain your understanding of Newton-cotes formula of numerical integration. Derive the trapezium rule of numerical integration using the Lagrange linear interpolating polynomial.	[8]	1/6
4.	(A) An industry produces four items x_1 , x_2 , x_3 , and x_4 . A portion of the amount produced for each is used in the manufacture of other items, and the net product is sold. The balance between the output and the production rate, resulting from various inputs, gives rise to the following four linear equations:	[12]	3/2
	$2x_1 + x_2 + +6x_4 = 64$		
	$5x_1 + 2x_2 = 37$		
	$7x_2 + 2x_3 + 2x_4 = 66$		
	$8x_3 + 9x_4 = 104$		
	Name different iterative method to estimate the amount of items x_1, x_2, x_3 , and x_4 . Which		
	method provides solution faster? State reason.		
	Use an iterative method (with formulation for iterative solution) to the show progress of converged solution in tabular form. Choose an appropriate convergence criterion and state it. (B) Discuss technique of spline interpolation. To develop a piecewise quadratic polynomial with a sets of 5 data points such as (x_i, y_i) , construct a system of required equation to obtain required unknowns.	[8]	1,2/ 6
5.	(A) An outcome of experimental investigation is depicted in following table in the form of	[12]	2/6
5.	input variable and output f(x).		
	x 1 3 4 5 7 10 f(x) 3 31 69 131 351 1011		
	(a) Construct Newton's forward divided difference table and develop interpolating polynomial.		
	(a) Predict maximum order of polynomial through the table of divided difference.		
	(b) Compare the values obtained from two quadratic polynomial using any two different data set of three, for $f(4.5)$, $f(8)$ and the second derivative of $f(x)$ at $x=3.2$.		
	(B) Explain following terms with examples:	[8]	1/1
	(i) Mathematical modeling and its need,		
	(ii) Numerical computation, (iii) Errors associated to numerical computation.		
6.	(A) A solid of revolution is formed by rotating about the x-axis, the area between the x-axis,	[12]	2/4
0.	the line $x=0$ and $x=1$, and a curve through the points with the following coordinates:	[]	·
	x 0 0.25 0.50 0.75 1.00		
	y 1.000 0.9896 0.9589 0.9089 0.8415		
	Using 1/3 Simpson formula, estimate the volume of the solid formed, $V = \pi \int_{0}^{\infty} y^2 dx$, giving the		
	answer to three decimal places.	1001	<u>ר/ ר</u>
	(B) Using Newton-Raphson method solve $x \log 10 x = 12.34$ with $x_0 = 10$.	[08]	2/3
7.	(A) Solve following system of equation by LU decomposition 2x + 3y + z = 9	[12]	3/2
	x + 2y + 3z = 6		
	3x + y + 2z = 8		
	Compare the result with Matrix Inversion method. (B) What do you understand by well conditioned system and ill conditioned system. Which parameters are used to recognize them. Illustrate with the help of an appropriate example.	[08]	1/2

T.Y.B. Tech. Mech Sem Bharatiya Vidya Bhavan's Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058. End Semester Exam, Nov 2017

Max. Marks: 100 Class: T. Y. B. Tech. Semester: V Name of the Course: Heat and Mass Transfer **Instructions:**

Duration: 3 hrs Program: Mech. Engg. Course Code : BTM501 Masterfile.

- Question No 1 is compulsory.
- Attempt any Four questions out of Six questions.
- Answers to all sub questions should be grouped together. ٠
- Figures to the right indicate full marks. •
- Make suitable assumptions with proper explanations.
- Draw the suitable sketches wherever necessary

Q. No		Ma rks	CO NO	M No.
Q1	Answer the following questions (any four)			1- 7
А.	Differentiate between steady and transient heat conduction with specific examples. How does heat convection differ from conduction?		1	,
B.	Explain the criteria of selection of fins. Define fin efficiency. Explain the importance of insulated tip solution for the fins used in practice.		1	
C.	What is LMTD correction factor? Why is a counter flow heat exchanger more effective than a parallel flow heat exchanger? How does fouling factor affect the performance of a heat exchanger?		1	
D.	State the examples of mass transfer in day-to-day life and industrial applications. What are the various mechanisms of mass transfer?		1	
E.	What does the Grashof Number represent? How is it different from the Reynolds number? Explain the significance of Grashof Number in Natural convection heat transfer.		1	
				5
Q2 (A)	A furnace wall is made up of refractory brick, red (fire) brick and outside plaster. There is an air gap with a thermal resistance of 0.15 m^2K/W between the refractory brick and the red brick. The refractory brick, 120 mm thick, has K =	10	4	2

1.58 W/mK. The red brick, 120 mm thick has K = 0.3 W/mK. The outside plaster, 15 mm thick, has K = 0.15 W/mK. The two extreme temperatures of this wall are 1000°C and 100°C. (6)

Determine (a) the heat flow rate in kJ/hour.m², and the interface temperatures.

(B) A hot cylindrical ingot (K = 60 W/mK, ρ = 7850 kg/m³, Cp = 0.430kJ/kgK) of 50 mm diameter and 250 mm length is removed from a furnace at 850°C and suddenly quenched in water at 20°C until its temperature drops to 550°C. Subsequently, the ingot is exposed to ambient air at 20°C and allowed to cool slowly to 100°C. The convective heat transfer coefficient is 250 W/m²K when the cooling medium is water and 25 W/m²K with air is the cooling fluid. Estimate the total time required for cooling from 850°C to 550°C in water. As well as estimate the time required for cooling from 550°C to 100°C in air. Estimate the total time required for cooling the ingot. State and justify any assumptions made.

Q3 Air at 1 bar pressure and at 20°C flows over a rectangular container, with top 07 4 4
(A) surface 750 mm long in direction of flow and one meter wide, at 35 m/s.

10

4

3

Determine the heat transfer from the top surface maintained at 60°C. Use the co-relation as: $\overline{Nu} = 0.664 \ (Re)^{0.5} \ (Pr)^{0.33}$ if $Re \le 5 \times 10^5$ $\overline{Nu} = [0.037 \ (Re)^{0.8} - 850] \ (Pr)^{0.33}$ if $Re > 5 \times 10^5$ Use property table for properties of air at bulk temperature.

(B) A refrigerated truck is moving at a speed of 90 km/hr where the ambient 10 4 temperature is 50°C. The body of the truck is of rectangular shape of size 10m (length) x 4m (width) x 3m (height). Assume that the boundary layer is turbulent on the four walls and the wall surface temperature is at 10°C. Neglect heat transfer from vertical front and backside of truck and flow of air is parallel to 10 m long side, calculate the heat loss from the four surfaces and power required to overcome the resistance acting on the four surfaces. For turbulent flow over flat surfaces: Nu = 0.036 (Re)^{0.8} (Pr)^{0.33}

Use property table for properties of air at bulk temperature.

- (C) What is Reynolds analogy? Describe the relation between fluid friction and 03 1 4 keat transfer.
- Q4 A cylindrical body of 300 mm diameter and 1.6 m height is maintained at a 06 4 4
 (A) constant temperature of 36.5°C. The surrounding temperature is 13.5°C. Find out the amount of heat to be generated by the body per hour. Use the co-relation as: Nu = 0.12 (Gr. Pr)^{0.33}

Use property table for properties of air at bulk temperature.

- (B) What is natural convection? How is it different from forced convection? In which 04 2 4 mode of heat transfer will the convective heat transfer coefficient usually be higher, and why?
- (C) Consider two large parallel plates one at temperature 727°C with emissivity 0.8 10 4 5 and other at 227°C with emissivity 0.4. An aluminium radiation shield with an emissivity 0.05 on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.

T.Y.B. Tech. Mech. Sem I

Q5 (A)	 A counter flow heat exchanger is employed to cool 0.55 kg/sec (Cp = 2.45 kJ/kgK) of oil from 115°C to 40°C by the use of water (Cp = 4.18 kJ/kgK). The inlet and outlet temperatures of cooling water are 15°C and 75°C, respectively. The overall heat transfer coefficient is expected to be 1450 W/m²K. Using NTU method, calculate the following: (a) mass flow rate of water (b) effectiveness of heat exchanger (c) surface area required 	08	4	6
(B)	Liquid oxygen (boiling temperature = -182° C) is to be stored in spherical container of 300 mm diameter. The system is insulated by an evacuated space between inner space and surrounding 450 mm inner diameter concentric sphere. For both spheres emissivities are 0.03 and temperature of the outer sphere is 30°C. Estimate the rate of heat flow by radiation to the oxygen in the container.	07	4	5
(C)	Prove that emissive power of a black body is equal to π times the intensity of radiation of black body.	05	2	5
Q6. (A)	Hydrogen gas at 25°C and 2.5 bar pressure flows through a rubber tubing of 12 mm inside radius and 24 mm outside radius. The binary diffusion coefficient of hydrogen is 2.1×10^{-8} m ² /s and the solubility of hydrogen is 0.055 m ³ of hydrogen per m3 of rubber at 1 bar. If the gas constant for hydrogen is 4160 J/kg.K and the concentration of hydrogen at the outer surface of tubing is negligible, calculate the diffusion flux rate of hydrogen per meter length of rubber tubing.	08	4	7
(B)	Estimate the heat transfer from a 40 W incandescent bulb at 125°C to 25°C in quiescent air. Approximate the bulb as a 50 mm diameter sphere. What percent of the power is lost by free convection? Assume that the characteristic length is the diameter of the sphere. Using equation: $Nu = 0.6 \{(Gr. Pr)^{0.25}\}$	07	4	4
(C)	Explain with neat sketches the different types of fins used in practice.	05	1	2
Q7	 Solve Following Questions (Any Four) A) Differentiate between isotropic and anisotropic materials. What is meant by thermal contact resistance? B) What is meant by lumped capacity analysis? What is the criterion of its validity? C) Describe the salient aspects in the selection and design of heat exchangers. 	20	1	1-7

- D) Explain in details of Shape Factor Algebra with examples.
- E) Define various types of concentrations, velocities and fluxes used in mass transfer.
- F) Explain the Physical interpretation of the Biot number and Fourier number.

T.Y.B. Tech Mech, Sem I BharatiyaVidyaBhavan's Sardar Patel College of Engineering (A Government Aided Autonomous Institute) Munshi Nagar, Andheri (West), Mumbai - 400058.

End Semester Exam, Nov 2017

Max. Marks: 100 Class: T. Y. B. Tech. Semester: V Name of the Course: Heat and Mass Transfer Instructions: Duration: **3 hrs** Program: **Mech. Engg.** Course Code : **BTM501**

Master file.

- Question No 1 is compulsory.
- Attempt any Four questions out of Six questions.
- Answers to all sub questions should be grouped together.
- Figures to the right indicate full marks.
- Make suitable assumptions with proper explanations.
- Draw the suitable sketches wherever necessary

Q. No		Ma rks	CO NO	M No.
Q1	Answer the following questions (any four)	20		1- 7
А.	Differentiate between steady and transient heat conduction with specific examples. How does heat convection differ from conduction?		1	·
B.	Explain the criteria of selection of fins. Define fin efficiency. Explain the importance of insulated tip solution for the fins used in practice.		1	
C.	What is LMTD correction factor? Why is a counter flow heat exchanger more effective than a parallel flow heat exchanger? How does fouling factor affect the performance of a heat exchanger?		1	
D.	State the examples of mass transfer in day-to-day life and industrial applications. What are the various mechanisms of mass transfer?		1	
E.	What does the Grashof Number represent? How is it different from the Reynolds number? Explain the significance of Grashof Number in Natural convection heat transfer.		1	
Q2 (A)	A furnace wall is made up of refractory brick, red (fire) brick and outside plaster. There is an air gap with a thermal resistance of $0.15 \text{ m}^2\text{K/W}$ between the	10	4	2

A) There is an air gap with a thermal resistance of 0.15 m⁻K/W between the refractory brick and the red brick. The refractory brick, 120 mm thick, has K = 1.58 W/mK. The red brick, 120 mm thick has K = 0.3 W/mK. The outside plaster, 15 mm thick, has K = 0.15 W/mK. The two extreme temperatures of this wall are 1000°C and 100°C.
 (b) Determine (a) the heat flow rate in kJ/hour.m², and the interface temperatures.

1

(B) A hot cylindrical ingot (K = 60 W/mK, ρ = 7850 kg/m³, Cp = 0.430kJ/kgK) of 10 4 50 mm diameter and 250 mm length is removed from a furnace at 850°C and suddenly quenched in water at 20°C until its temperature drops to 550°C. Subsequently, the ingot is exposed to ambient air at 20°C and allowed to cool slowly to 100°C. The convective heat transfer coefficient is 250 W/m²K when the cooling medium is water and 25 W/m²K with air is the cooling fluid. Estimate the total time required for cooling from 850°C to 550°C in water. As well as estimate the time required for cooling from 550°C to 100°C in air. Estimate the total time required for cooling the ingot. State and justify any assumptions made.

3

- Q3 Air at 1 bar pressure and at 20°C flows over a rectangular container, with top 07 4 (A) surface 750 mm long in direction of flow and one meter wide, at 35 m/s. Determine the heat transfer from the top surface maintained at 60°C. Use the co-relation as: $\overline{Nu} = 0.664 (Re)^{0.5} (Pr)^{0.33}$ if $Re \le 5 \times 10^5$ $\overline{Nu} = [0.037 (Re)^{0.5} - 850] (Pr)^{0.33}$ if $Re > 5 \times 10^5$ Use property table for properties of air at bulk temperature.
- (B) A refrigerated truck is moving at a speed of 90 km/hr where the ambient 10 4 temperature is 50°C. The body of the truck is of rectangular shape of size 10m (length) x 4m (width) x 3m (height). Assume that the boundary layer is turbulent on the four walls and the wall surface temperature is at 10°C. Neglect heat transfer from vertical front and backside of truck and flow of air is parallel to 10 m long side, calculate the heat loss from the four surfaces and power required to overcome the resistance acting on the four surfaces: Nu = 0.036 (Re)^{0.8} (Pr)^{0.33}

Use property table for properties of air at bulk temperature.

- (C) What is Reynolds analogy? Describe the relation between fluid friction and 03 1 4 transfer.
- Q4 A cylindrical body of 300 mm diameter and 1.6 m height is maintained at a 06 4 4 (A) constant temperature of 36.5C. The surrounding temperature is 13.5C. Find out the amount of heat to be generated by the body per hour. Use the co-relation as: $Nu = 0.12 (Gr. Pr)^{0.33}$ Use property table for properties of air at bulk temperature.
- (B) What is natural convection? How is it different from forced convection? In which 04 2 4 mode of heat transfer will the convective heat transfer coefficient usually be higher, and why?
- (C) Consider two large parallel plates one at temperature 727°C with emissivity 0.8 10 4 5 and other at 227°C with emissivity 0.4. An aluminium radiation shield with an emissivity 0.05 on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.

T.Y.B. Tech. Mech. sem I

·. ·.

Q5 (A)	 A counter flow heat exchanger is employed to cool 0.55 kg/sec (Cp = 2.45 kJ/kgK) of oil from 115°C to 40°C by the use of water (Cp = 4.18 kJ/kgK). The inlet and outlet temperatures of cooling water are 15°C and 75°C, respectively. The overall heat transfer coefficient is expected to be 1450 W/m²K. Using NTU method, calculate the following: (a) mass flow rate of water (b) effectiveness of heat exchanger (c) surface area required 	08	4	6
(B)	Liquid oxygen (boiling temperature = -182° C) is to be stored in spherical container of 300 mm diameter. The system is insulated by an evacuated space between inner space and surrounding 450 mm inner diameter concentric sphere. For both spheres emissivities are 0.03 and temperature of the outer sphere is 30°C. Estimate the rate of heat flow by radiation to the oxygen in the container.	07	4	5
(C)	Prove that emissive power of a black body is equal to π times the intensity of radiation of black body.	05	2	5
Q6. (A)	Hydrogen gas at 25°C and 2.5 bar pressure flows through a rubber tubing of 12 mm inside radius and 24 mm outside radius. The binary diffusion coefficient of hydrogen is 2.1×10^{-8} m ² /s and the solubility of hydrogen is 0.055 m ³ of hydrogen per m3 of rubber at 1 bar. If the gas constant for hydrogen is 4160 J/kg.K and the concentration of hydrogen at the outer surface of tubing is negligible, calculate the diffusion flux rate of hydrogen per meter length of rubber tubing.	08	4	7
(B)	Estimate the heat transfer from a 40 W incandescent bulb at 125°C to 25°C in quiescent air. Approximate the bulb as a 50 mm diameter sphere. What percent of the power is lost by free convection? Assume that the characteristic length is the diameter of the sphere. Using equation: $Nu = 0.6 \{(Gr. Pr)^{0.25}\}$	07	4	4
(C)	Explain with neat sketches the different types of fins used in practice.	05	1	2
Q7	 Solve Following Questions (Any Four) A) Differentiate between isotropic and anisotropic materials. What is meant by thermal contact resistance? B) What is meant by lumped capacity analysis? What is the criterion of its validity? C) Describe the salient aspects in the selection and design of heat exchangers. 	20	1	1-7

- D) Explain in details of Shape Factor Algebra with examples.
- E) Define various types of concentrations, velocities and fluxes used in mass transfer.
- F) Explain the Physical interpretation of the Biot number and Fourier number.